

# Can Expressive Language Features Indicate Whether Low-Verbal Children with ASD will Progress Linguistically?



Kaya J. LeGrand & Letitia Naigles
University of Connecticut

## Background

- Definitions of "minimally verbal" and "low verbal" vary greatly but often involve reference to expressive vocabulary size<sup>1,2</sup>
- But vocabulary is not sufficient for language development; children must also learn to *combine* words and morphemes (morphosyntactic development)
- Many autistic children learn words but do not progress to a stage of consistently combining them
- Many linguistic and cognitive factors predict language development in autism in general<sup>3-6</sup>
- What relates *specifically* to progress in morphosyntax?

Among autistic and typically developing (TD) children who begin at the same level of morphosyntactic development, what distinguishes those who progress linguistically from those who remain stable?

#### Methods

- Data from a larger longitudinal project<sup>7</sup>; ASD = 12, TD = 6
- Language samples from parent-child play sessions
- Time 1 (T1) mean age = 31.81 months
  - Groups matched on mean length of utterance (MLU) in morphemes; no children regularly combined words/morphemes (MLU < 2)</li>
- Time 2 (T2) mean age = 51.70 months
  - Half of ASD group (n = 6) still did not regularly combine words ("static-ASD")
  - Other half of ASD group (n = 6) *did* regularly combine words ("change-ASD")
  - Entire TD group regularly combined words
- Qualitative analysis of T1 group differences in...
  - Expressive language features: number of different words (NDW), proportion of noun types (out of total word types), proportion of verb types, verb uniqueness (i.e., verbs produced by one group and not the others)
  - Non-expressive measures: receptive language scores, duration of response to joint attention (RJA)

#### Results

The static-ASD group differed on expressive language measures at T1 when compared to the change-ASD and TD groups.



The static-ASD group had lower receptive language scores and engaged in less RJA at T1 than the change-ASD and TD groups.



### Discussion

- The static-ASD group demonstrated differences in overall vocabulary size, lexical composition, and number of unique verbs compared to the change-ASD and TD groups
- Smaller vocabulary size in the static-ASD group is consistent with previous findings that emphasize the link between lexical and grammatical development<sup>8</sup>
- Our results suggest that lexical composition may differ in children who remain at a low level of morphosyntactic development compared with those who progress
- The change-ASD and TD groups produced more unique verbs than the static-ASD group, likely reflecting their larger verb vocabulary overall
  - However, children in the static-ASD did produce some unique verbs
- Group differences were clearest in the non-expressive measures (receptive language, RJA duration)
  - Skills like language comprehension and ability to join social interactions might be more indicative of future linguistic progress, compared with more specific expressive language features

#### References

- 1. Koegel, L. K., Bryan, K. M., Su, P. L., Vaidya, M., & Camarata, S. (2020). Definitions of nonverbal and minimally verbal in research for autism: A systematic review of the literature. Journal of Autism and Developmental Disorders, 50, 2957–2972.
- 2. Tager-Flusberg, H., & Kasari, C. (2013). Minimally verbal school- aged children with autism spectrum disorder: The neglected end of the spectrum. *Autism Research*, 6(6), 468–478.
- 3. Anderson, D. K., Liang, J. W., & Lord, C. (2014). Predicting young adult outcome among more and less cognitively able individuals with autism spectrum disorders. *The Journal of Child Psychology and*
- 4. LeGrand, K. J., Wisman Weil, L., Lord, C., & Luyster, R. J. (2021). Identifying childhood expressive language features that best predict adult language and communication outcome in individuals with autism spectrum disorder. *Journal of Speech, Language, and Hearing Research, 64*, 1997-1991.
- the macarthur—bates communicative development inventory. *Journal of Speech, Language, and Hearing Research, 50*(3), 667–681.

  Wodka, E. L. Mathy, P. & Kalb, L. (2013). Predictors of phrase and fluent speech in children with autism.

5. Luyster, R., Qiu, S., Lopez, K., & Lord, C. (2007). Predicting outcomes of children referred for autism using

- Wodka, E. L., Mathy, P., & Kalb, L. (2013). Predictors of phrase and fluent speech in children with autism and severe language delay. Pediatrics, 131(4), e1128–e1134.
  Naigles, L. R., & Fein, D. (2017). Looking through their eyes: Tracking early language comprehension in
- ASD. In L. R. Naigles (Ed.), Innovative investigations of language in autism spectrum disorder (pp. 49–69). American Psychological Association; Walter de Gruyter GmbH. Moyle, M. J., Ellis Weismer, S., Evans, J. L., & Lindstrom, M. J. (2007). Longitudinal Relationships Between

Lexical and Grammatical Development in Typical and Late-Talking Children. *Journal of Speech, Language, and Hearing Research, 50*(2), 508–528.

This work is supported by NIHDCD R01 DC 07428 and R01 DC 01666.

Please direct correspondence to Kaya LeGrand at <a href="mailto:kaya.legrand@uconn.edu">kaya.legrand@uconn.edu</a>.